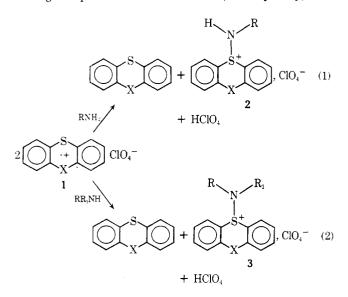
25-9; cis-5-(2-isopropyl-1,3-dioxanyl)acetic acid, 61523-26-0; trans-5-(2-isopropyl-1,3-dioxanyl)acetic acid, 61523-27-1; cis-2-isopropyl-5-(2-hydroxyethyl)-1,3-dioxane, 61523-28-2; trans-2-isopropyl-5-(2-hydroxyethyl)-1,3-dioxane, 61523-29-3; cis-2-isopropyl-5-(2hydroxyethyl)-1,3-dioxane tosylate, 61523-30-6; trans-2-isopropyl-5-(2-hydroxyethyl)-1,3-dioxane tosylate, 61523-31-7; dimethyl-5-(cis-2-isopropyl-1,3-dioxanyl)-2-ethylsulfonium p-toluenesulfonate, 61523-32-8; dimethyl-5-(trans-2-isopropyl-1,3-dioxanyl)-2-ethylsulfonium p-toluenesulfonate, 61523-33-9; cis-2-isopropyl-5-methoxy-1,3-dioxane, 28808-16-4; trans-2-isopropyl-5-methoxy-1,3dioxane, 36094-12-9; cis-2-isopropyl-5-(methoxymethyl)-1,3-dioxane, 28808-25-5; trans-2-isopropyl-5-(methoxymethyl)-1,3-dioxane, 58619-95-7; cis-2-isopropyl-5-(methylsulfinyl)-1,3-dioxane, 40245-31-6; trans-2-isopropyl-5-(methylsulfinyl)-1,3-dioxane, 40245-32-7; cis-2-isopropyl-5-(methylsulfonyl)-1,3-dioxane, 40245-33-8; trans-2-isopropyl-5-(methylsulfonyl)-1,3-dioxane, 40245-34-9; dimethyl-5-(cis-2-isopropyl-1,3-dioxanyl)sulfonium p-toluenesulfonate, 58620-17-0; dimethyl-5-(trans-2-isopropyl-1,3-dioxanyl)sulfonium p-toluenesulfonate, 58620-19-2.

References and Notes

- (1) Part 35: E. L. Eliel and R. L. Willer, J. Am. Chem. Soc., 99, 1936 (1977).
- Taken in part from the B.S. Honors Thesis of R. Sechrest.
- M. K. Kaloustian, N. Dennis; S. Mager, S. A. Evans, F. Alcudia, and E. L. Eliel, J. Am. Chem. Soc., 98, 956 (1976). (3)

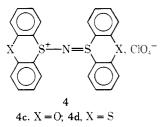
- (4) E. L. Eliel and H. D. Banks, *J. Am. Chem. Soc.*, **94**, 171 (1972).
 (5) E. L. Eliel and M. C. Knoeber, *J. Am. Chem. Soc.*, **90**, 3444 (1968).
 (6) R. J. Abraham, H. D. Banks, E. L. Eliel, O. Hofer, and M. K. Kaloustian, *J.* Am. Chem. Soc., **94**, 1913 (1972). F. G. Riddell and M. J. T. Robinson, *Tetrahedron*, **23**, 3417 (1967).
- (8) Cf. M. K. Kaloustian, J. Chem. Educ., 51, 777 (1974).
 (9) Cf. R. J. Abraham and E. Bretschneider in "Internal Rotation in Molecules",
- (9) Ci. R. J. Abraham and E. Bretschindler in Internal Adatom in Molecules , W. J. Orville-Thomas, Ed., Wiley-Interscience, New York, N.Y., 1974.
 (10) E. L. Eliel and O. Hofer, J. Am. Chem. Soc., 95, 8041 (1973).
 (11) J. G. Kirkwood and F. H. Westheimer, J. Chem. Phys., 6, 506 (1938); F. H. Westheimer and J. G. Kirkwood, *ibid.*, 6, 513 (1938).
 (12) C. K. Ingold, "Structure and Mechanism in Organic Chemistry", 2nd ed, G. Bell and Social London. 1969, p. 70.
- G. Bell and Sons, Ltd., London, 1969, p 70. (13) Procedure of V. E. Diner, F. Sweet, and R. K. Brown, *Can. J. Chem.*, **44**,
- 1591 (1966).

Ion Radicals. 38. Reactions of Phenoxathiin and Thianthrene Cation Radicals with Alkyl- and Dialkylamines^{1,2}


B. K. Bandlish,³ S. R. Mani,⁴ and H. J. Shine*

Department of Chemistry, Texas Tech University, Lubbock, Texas 97409

Received October 18, 1976


Phenoxathiin cation radical perchlorate (1c) reacted with alkylamines to form protonated N-alkylsulfilimine perchlorates (2c) and with dialkylamines to form N,N-dialkylaminosulfonium perchlorates (3c). Analogous reactions were obtained with thianthrene cation radical (1d), giving products 2d and 3d. Reaction of 1d with alkylamines also gave in every case some 5,5-dihydro-5-(5-thianthreniumylimino)thianthrene perchlorate (4d). Only in one case, reaction with propylamine, did 1c give the analogous 4c. The salts 2c were deprotonated to give the N-alkylsulfilimines (5c and 5d) and these were methylated with methyl iodide giving N-alkyl-N-methylaminosulfonium iodides (6c and 6d). Most of the sulfonium salts (6c and 6d) were converted into the corresponding perchlorates (3c and 3d) which were also obtained directly by reactions of 1c and 1d with N-alkylmethylamines.

It was shown recently that the cation radical perchlorates of 10-methyl-(1a, X = N-Me) and 10-phenylphenothiazine $(1b, X = N-C_6H_5)$ react with alkyl- and dialkylamines according to eq 1 and 2.5 We have found, subsequently, that

phenoxathiin cation radical perchlorate (1c, X = 0) undergoes analogous reactions. Further, it was reported by Kim and Shine⁶ that thianthrene cation radical perchlorate (1d, X =S) did not react with alkylamines according to eq 1 except in the case of tert -butylamine. That is, reaction of 1d with ethyl-,

propyl-, and cyclohexylamine was reported to give the dimeric product (4d, X = S) instead of products 2d (R = Et, Pr, C_6H_{11}). We have found now that this report is not correct.

Reaction of alkylamines with 1d (eq 1) is not as facile as with the analogues 1a-c, but it does give the sulfilimine salts 2d (X = S) although in poor yields. At the same time the dimer byproduct 4d is formed but not exclusively as was reported earlier.6

Separation of products 2d from the other products of reaction is tedious and apparently was not achieved earlier. Thus, the reactions of eq 1 and 2 are general for the series X = S, O, N-Me, N-C₆H₅, but yields vary from case to case. Data for reactions of 1c and 1d are given in Tables I and II. These data show that the dimer 4d was obtained from all reactions of 1d with alkylamines, whereas the dimer 4c was obtained only in reaction of 1c with propylamine. Small amounts of phenoxathiin 5-oxide and thianthrene 5-oxide were also obtained presumably from reaction of the cation radicals with water in the reagents or solvents.7

Deprotonation of the products 2c and 2d was carried out

Cation radical	R in RNH ₂	Registry no.	% 2ª	Parent ^b % ^c	5-Oxide ^b % ^c	% 4 ^d	Мр, °С 2
1 c	Pr	107-10-8	41	47	1	6	Oil
1c	t-Bu	75-64-9	46	44	7		203 - 204
1c	C_6H_{11}	108-91-8	35	54	8		148 - 149
1 c	$C_6H_5CH_2$	100-46-9	20	63	10		145 - 146
1d	Me	74 - 89 - 5	15	66	3	8	120-122
1 d	Et	75-04-7	20	61	4	14	117-118
1 d	Pr		21	60	5	5	Oil
1 d	$C_{6}H_{11}$		19	62	6	3	Oil
1 d	$C_6 H_5 CH_2$		18	65		8	143 - 144

 Table I. Products of Reaction of Phenoxathiin Cation Radical Perchlorate (1c) and Thianthrene Cation Radical Perchlorate (1d) with Alkylamines in Acetonitrile

 a % yield means the amount of cation radical converted into product. The maximum yield of 2 is 50% (eq 1). b Phenoxathiin from 1c, thianthrene from 1d. c Equal amounts of parent and 5-oxide are obtained from the reaction of a cation radical with water. d % yield means the amount of cation radical converted into 4.

Table II. Products of Reaction of Phenoxathiin Cation Radical Perchlorate (1c) and Thianthrene Cation Radical Perchlorate (1d) with Dialkylamines in Acetonitrile

Cation radical	R	R_1	Registry no.	% 3 a	Parent ^b % ^c	5-Oxide ^b % ^c	Mp, °C 3
1c	Me	Me	124-40-3	7	73	8	151 - 152
1c	i-Pr	i-Pr	108-18-9	13	63	8	180-181
1c	Pr	Me	627-35-0	8	65	8	139 - 140
1 c	C_6H_{11}	Me	100-60-7	11	62	8	200-201
1c	$C_6 H_5 CH_2$	Me	103-67-3	17	70	8	173 - 174
1c	$C_6H_5CH_2$	$C_6H_5CH_2$	103-49-1	27	61	11	145 - 146
1d	Pr	Me		22	70	10	129–131
1d	C_6H_{11}	Me		20	68	5	172 - 174
1 d	$C_6H_5CH_2$	Me		32	67	6	154 - 156

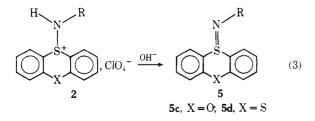

^a % yield means the amount of cation radical converted into product. The maximum yield of 3 is 50% (eq 1). ^b Phenoxathiin from 1c, thianthrene from 1d. ^c Equal amounts of parent and 5-oxide are obtained from the reaction of a cation radical with water.⁷

Table III. List of Sulfilimines (5) Obtained by Deprotonation of Sulfonium Perchlorates (2), Their Adducts (6) with
Methyl Iodide, and the Perchlorates (3) Obtained from 6 by Exchange with AgClO4

Sulfilimine	R in 5	% yield of 5	Mp, °C of 5	% yield of 6	Mp, °C of 6	% yield of 3	Mp, °C of 3 ^{<i>a</i>}
5c	Pr	87	Oil	97	132-133	86	138-139
5c	t-Bu	95	74 - 75	84	168 - 169	80	183-184
5c	$C_{6}H_{11}$	100	172 - 173	93	142 - 143	90	201-203
5c	$C_6H_5CH_2$	100	143 - 144	100	72 - 75	87	172 - 173
5 d	Me	95	44 - 46	93	110-112	93	$139 - 141^{6}$
5d	Pr	96	Oil	87	107 - 109	94	128 - 130
5d	$C_{6}H_{11}$	98	119 - 120	84	122 - 124	98	170 - 172
5d	$C_6H_5CH_2$	97	Oil	56	130-132	95	154 - 156

^a Cf. melting points of 3c and 3d obtained directly, Table II. ^b Product by direct reaction, mp 139–140 °C.⁶

in most cases, leading to the free sulfilimines **5c** and **5d** (eq 3). Data for these reactions are given in Table III. Methylation

of the sulfilimines with methyl iodide in dry ether gave the N-methylsulfonium iodides **6c** and **6d** (eq 4) in good yields, and conversion of the iodides to perchlorates was carried out (eq 5) in all cases. Thus, the compounds **3c** and **3d** ($\mathbf{R}_1 = \mathbf{M}_2$)

$$5 + MeI \longrightarrow \bigcup_{X}^{S^{+}} \bigcup_{X}^{He}, I^{-} \qquad (4)$$

$$6c, X = 0; 6d, X = S$$

$$6 + AgClO_{4} \longrightarrow 3 \qquad (5)$$

$$\begin{array}{ccc} \text{CIO}_4 & \longrightarrow & \mathbf{3} \\ & \mathbf{3c}, \ \mathbf{X} = \mathbf{0}; \ \mathbf{3d}, \ \mathbf{X} = \mathbf{S} \end{array} \tag{2}$$

were obtained both directly (eq 2) and indirectly (eq 5). Data for reactions 4 and 5 are also given in Table III.

The way in which the dimeric products 4c and 4d are formed in reactions of 1c with propylamine and 1d with all of the alkylamines is not known. Attempts to obtain 4d by re-

Table IV. Absorption and NMR Spectra of Products: Sulfilimines (5), Protonated Sulfilimines (2) and Dialkylsulfonium Perchlorates (3), and Dialkylsulfonium Iodides (6)

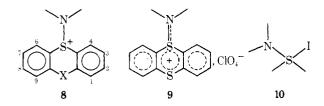

Compd	R	R ₁	λ_{\max} , nm $(10^{-4} \epsilon)^a$	¹ H NMR, δ (<i>J</i> , Hz)	Solvent
2c	Pr			8.17 (d of d, $J = 7$, $J = unres$, 2 H) ^b 8.03–7.50 (m, 6 H,	$CDCl_3$
20				arom), 6.30 (s, 1 H, -NH), 2.47 (t, 2 H, -CH ₂ CH ₂ CH ₃), 1.33 (m, 2 H, -CH ₂ CH ₂ CH ₃), 0.67 (t, 3 H, Me)	-
2c	$C_6H_5CH_2$		234 (2.44), 299 (0.52)	7.95 (d of d, $J = 8$, $J = unres$, 2 H), ^b 7.82-7.46 (m, 6 H, arom), 7.2-7.04 (m, 5 H, C ₆ H ₅ CH ₂), 3.68 (s, 2 H, C ₆ H ₅ CH ₂)	$(CD_3)_2C = C$
2c	<i>t</i> -Bu		235 (3.47), 302 (0.50)	8.02 (d of d, $J = 8.5$, $J = 2, 2$ H), ^b 7.80 (m, $J = 8.5$, $J = 7$, $J = 2, 2$ H) ^c 7.43 (m, 4 H, arom), 1.20 (s, 9 H, t-Bu)	$(CD_3)_2C=0$
2c	C_6H_{11}		231 (1.72), 302 (0.48)	7, 5 = 2, 211 7.45 (iii, 411, atom), 1.20 (s, 511, 4-Dd) 8.17 (d, $J = 8, 2$ H), b 7.94 (m, 2 H), c 7.64 (m, 4 H, arom), 1.70–0.9 (m, 10 H, C ₆ H ₁₁)	$(CD_3)_2S=0$
2 d	Me		221 (2.30), 253 (1.19), 294 (0.81), 328 (0.43)	1.70-0.5 (ni, 10 H, C $_{6}$ H $_{11}$) 8.22 (d of d, $J \simeq 7, 2$ H), ^b 7.89-7.57 (m, 6 H, arom), 6.24 (bd s, 1 H, removed with D ₂ O, -NH), 2.57 (d, becomes s with D ₂ O, 3 H, Me)	$CDCl_3$
2d	Et		222 (2.02), 252 (1.21), 293 (0.90), 326 (0.38)	s with D_20 , 3 H, Me) 8.19 (d of d, $J \simeq 7$, $J \simeq 2$, 2 H), ^b 7.93–7.57 (m, 6 H, arom), 2.96 (q, $J = 7.5$, 2 H, $-CH_{2}$ -) 1.02 (t, $J = 7.5$, 3 H, Me)	CD ₃ CN
2d	Pr			8.25 (d, 2 H), ^b 7.98-7.60 (m, 6 H, arom), 6.07 (s, 1 H, removed with D_2O , -NH), 2.84 (q, becomes t with D_2O , $J = 6$, 2 H, -CH ₂ -), 1.44 (sext, 2 H, -CH ₂ -), 0.73 (t, $J = 7$, 3 H, Me)	CDCl ₃
2 d	$C_{6}H_{11}$			8.27 (m, 2 H), ^b 7.72 (m, 6 H, arom), 4.73 (bd s, 1 H, removed with D_2O –NH), 3.20 (bd s, 1 H, α -C ₆ H ₁₁),	$CDCl_3$
2 d	$C_6H_5CH_2$			1.88–0.96 (bd m, 10 H, C_6H_{11}) 8.16 (d of d, 2 H), ^b 7.70–7.52 (m, 6 H, arom), 7.20–7.02	$CDCl_3$
3c	Me	Me	239 (1.26), 279 (0.43),	(m, 5 H, C_6H_5), 4.10 (s, 2 H, $-CH_2$ -) 8.29 (d of d, $J = 8, J = unres, 2 H$), $^{b} 8.05$ (m, 2 H,	CD_3CN
3c	Pr	Me	304 (0.68) 238sh (1.41), 278 (0.44), 304 (0.68)	arom), ^c 7.76 (m, 4 H, arom), 2.02 (s, 3 H, Me) 8.08 (d of d, 2 H), ^b 7.90–7.50 (m, 6 H, arom), 3.12 (t, 2 H, -CH ₂ CH ₂ CH ₃), 2.52 (s, 3 H, -NMe), 1.53 (m, 2 H,	$(CD_3)_2C=0$
3c	$\mathrm{C}_6\mathrm{H}_{11}$	Me	238 (1.90), 279 (0.41), 304 (0.57)	$-CH_2CH_2CH_3$), 0.80 (t, 3 H, Me) 8.33 (d of d, $J = 8$, $J = unres$, 2 H), ⁶ 8.05 (m, 2 H, arom), ^c 7.95-7.61 (m, 4 H, arom), remaining peaks overlapped with solvent impurity (CH ₃) ₂ S=O	$(CD_3)_2S=0$
3c	$C_6H_5CH_2$	Me	239sh (1.95), 306 (0.63)	8.32 (d of d, $J = 8.5$, $J = 2, 2$ H), ^b 8.1 (m, 2 H, arom), ^c 7.75 (m, 4 H, arom), 7.42 (m, 5 H, C ₆ H ₅), 4.56 (s, 2 H, -CH ₂ -), 2.57 (s, 3 H, Me)	$(CD_3)_2C = C$
3c	<i>i</i> -Pr	<i>i</i> -Pr	238sh (1.41), 275 (0.48), 303 (0.69)	$\begin{array}{l} \textbf{-CH}_{2}^{(2)}, \textbf{LS}^{(4)}, \textbf{G}^{(4)}, \textbf{H}^{(4)}, \textbf{H}$	(CD ₃) ₂ C==0
3c	$C_6H_5CH_2$	$C_6H_5CH_2$	239 (2.02), 309 (0.68)	8.04 (d of d, $J = 8$, $J = 2$, 2 H), ^b 7.92 (d of d, $J = 8$, $J = 2$, 2 H, arom), ^c 7.65 (t, $J = 8$, 4 H, arom), 7.40–7.06 (m, 10 H, C ₆ H ₅), 4.28 (s, 4 H, –CH ₂ –)	$(CD_3)_2S=0$
3d	Me	Me	222 (2.81), 255 (0.97), 298 (0.78), 330 (0.45)	8.34 (m, 2 H), ^b 7.80 (m, 6 H, arom), 2.83 (s, 6 H, Me)	$CDCl_3$
3d	Pr	Me	226 (2.74), 256 (1.32), 298 (0.85), 335 (0.43)	8.27 (d of d, $J = 8$, $J = unres$, 2 H), ^b 7.80 (s, 6 H, arom), 3.24 (t, $J = 8$, 2 H, $-CH_{2-}$), 2.65 (s, 3 H, $-NMe$), 1.57 (sext, 2 H, $-CH_{2-}$), 0.84 (t, $J = 8$, 3 H, Me)	CDCl ₃
3 d	C_6H_{11}	Me	225 (2.64), 258 (1.23), 296 (0.83), 334 (0.42)	8.36 (m, 2 H), ^b 7.75 (m, 6 H, arom), 2.60 (s, 3 H, Me), 2.0–1.0 (bd m, 10 H, C ₆ H ₁₁) ^d	$CDCl_3$
3d	$C_6H_5CH_2$	Me	225 (0.03), 334 (0.42) 225 (3.61), 257 (1.35), 298 (0.90), 329 (0.64)	2.50–1.6 (do ff, $J = 7, J = unres, 2 H$), ^b 7.87 (s, 6 H, arom), 7.51–7.27 (m, 5 H, C ₆ H ₅), 3.33 (s, 2 H, $-CH_{2-}$) 2.55 (s, 3 H, Me)	CDCl ₃ - CD ₃ CN
5c	<i>t</i> -Bu			7.84 (d of d, $J = 7, j$, 2, 2 H), ^b 7.5–7.12 (m, 6 H, arom),	$CDCl_3$
5c	$C_{6}H_{11}$			0.98 (s, 9 H, t-Bu) 7.86 (d of d, $J = 8, 2$ H), ^b 7.66–7.20 (m, 6 H, arom), 1.70 0.70 (m, 11 H, CeHu)	$CDCl_3$
5c	$C_6H_5CH_2$			1.70–0.70 (m, 11 H, C_6H_{11}) 7.83 (d of d, 2 H), ^b 7.68–7.04 (m, 11 H, arom), 3.46 (s,	$CDCl_3$
5d	Me		294 (0.49) 216 (2.64), 259 (1.93), 285 sh (1.62), 325 sh (0.36)	2 H, $-CH_{2}-)$ 7.90 (d of d, $J \simeq 6$, $J \simeq 2$, 2 H), ^b 7.66–7.25 (m, 6 H, arom), 2.78 (s, 3 H, Me)	$CDCl_3$
5 d	Pr		(0.00)	7.95 (d of d, $J = 7$, $J = 2$ H), ^b 7.59–7.33 (m, 6 H, arom), 2.98 (t, $J = 7.5$, 2 H, –CH ₂ –), 1.70 (sext, $J = 7.5$, 2 H, –CH ₂ –), 0.95 (t, $J = 7.5$, 3 H, Me)	$CDCl_3$
5d	$C_{6}H_{11}$		242 (1.38), 285 (0.43), 333 (0.08)	8.07 (d, $J = 8, 2$ H), b^{5} 7.66–7.32 (m, 6 H, arom), 3.05 (bd s, 1 H, α -C ₆ H ₁₁), 3.04–1.0 (bd m, 10 H, C ₆ H ₁₁)	$CDCl_3$
5d	$C_6H_5CH_2$		000 (000)	7.90 (d of d, 2 H), b 7.69–7.17 (m, 11 H, arom), 4.23 (s, 2 H, –CH ₂ –)	$CDCl_3$

	Table IV (Continued)								
Compd	R	R ₁	$\lambda_{\max}, \operatorname{nm} (10^{-4} \epsilon)^a$	¹ H NMR, δ (<i>J</i> , Hz)	Solvent				
6d	Me	Me		8.67 (m, 2 H), ^b 7.82 (s, 6 H, arom), 2.90 (s, 3 H, Me)	$CDCl_3$				
6d	Pr	Me	225 (3.50), 244 (2.77), 298 (0.98), 334 (0.53)	8.53 (d of d, $J = 8$, $J = unres$, 2 H), ^b 7.95-7.71 (m, 6 H, arom), 3.31 (t, 2 H, $-CH_{2-}$), 2.71 (s, 3 H, $-NMe$), 1.59 (sext, $J = 7$, $-CH_{2-}$), 0.85 (t, $J = 7$, Me)	$CDCl_3$				
6 d	$C_{6}H_{11}$	Me	223 (2.87), 242 (2.27), 296 (0.80), 332 (0.41)	8.61 (d of d, $J = 8$, $J = unres$, 2 H), ^b 7.78 (s, 6 H, arom), 4.0 (bd s, 1 H, α -C ₆ H ₁₁), 2.63 (s, 3 H, -NMe), 2.06-1.06 (bd m, 10 H C ₆ H ₁₁)	$CDCl_3$				

^{*a*} Solvent CH₃CN in all cases. ^{*b*} This assignment is to the two protons in the 4,6 positions (S is at position 5 of the ring). Each proton undergoes coupling with its ortho and meta protons. In some cases the coupling pattern was well resolved, while in others resolution was poor. ^{*c*} This assignment is to the two protons in the 3,7 positions. Each proton undergoes coupling with two ortho protons and one meta proton. ^{*d*} The α -H could not be detected.

action of 1d with one of the protonated sulfilimine perchlorates (2d, R = Pr) were not successful. However, some of 4d (3%) was obtained by reaction of the free sulfilimine 5d (R =Me) with 1d in acetonitrile. In this reaction the solid 1d was added in small portions to a stirred solution of the sulfilimine, and initially the purple color of 1d disappeared rapidly with each addition, but long before 1 equiv of 1d was added the color of the cation radical persisted. That is, reaction between 1d and 5d ceased after a while. The 1d which persisted in solution was destroyed by adding water. A recovery of 70% of the 5d in the protonated form (i.e., 2d, R = Me) was obtained. The amounts of thianthrene (82%) and its 5-oxide (31%) obtained indicate that some of the 5d was also converted into thianthrene and/or its 5-oxide. The origin of 4d in reactions of cation radicals with alkylamines may thus be from reactions of the free sulfilimines with cation radical. Although the protonated sulfilimine and perchloric acid are formed in reaction of 1d with an alkylamine (eq 1), there is always an excess of alkylamine present, so that free sulfilimine (although a strong base) is likely to be present. However, why 1d is converted into 4d more easily than 1c into 4c (and than 1a,b into (4a,b),⁵ and what may be the fate of the alkyl group (R), are in any event still unknown.

Given in Table IV are the ¹H NMR data for most of the products 2, 3, 5, and 6. In every case the most downfield signals are assignable to the two protons in the 4,6 positions (8). In

a number of cases, particularly of phenoxathiin derivatives (X = 0), the spectra were well enough resolved to give the doublet of doublets for these equivalent protons, with J values of about 8 and 2 Hz. These doublets centered at δ values of 8.16-8.28 for compounds 2, 8.04-8.36 for compounds 3, and 7.83-8.07 for the unprotonated compounds 5, illustrating the deshielding effect of the formal positive charge in compounds 2 and 3. Some variation due to the use of different solvents may have been experienced, but it is not marked. The same pattern for the 4,6 protons is seen in phenoxathiin 5-oxide (δ 7.89, J = 8 and 2 Hz) and thianthrene 5-oxide (δ 7.96) in CDCl₃. Thus, the deshielding effect of the S=NR group is about as great as that of the S=O group. The high value of δ 8.07 for 5d (R = C₆H₁₁) is unusual and is not seen in the corresponding 5c (δ 7.86).

The very interesting effect of the anion in compounds 3d and 6d is seen. That is, for 3d (R = Me, Pr, C₆H₁₁) δ values for H_{4,6} are 8.34, 8.27, and 8.36, respectively. The corresponding values for 6d are 8.67, 8.53, and 8.61, resulting in downfield shifts of 0.33, 0.26, and 0.25 δ , respectively, by changing the anion from ClO₄⁻ to I⁻. Downfield shifts of the *N*-methyl group in each of these compounds amounted to 0.07, 0.06, and 0.03 δ when changing from ClO₄⁻ to I⁻, and a similar shift of 0.07 δ is seen in the α -CH₂ of the propyl groups. The data suggest that in the compounds 3 the ClO₄⁻ ion is separated from the charge-delocalized cation as in 9, while in compounds 6 the iodide ion may, in fact, be well attached to sulfur (10) and through its inductive effect cause even greater deshielding of nearby protons.

Experimental Section

Phenoxathiin⁸ and thianthrene^{7a} cation radical perchlorates (1c and 1d) were prepared as described earlier. The potential hazard of explosiveness of these compounds should be noted.⁹ Reactions of 1c and 1d with amines were carried out in Eastman anhydrous grade (<0.05% water) CH₃CN stored over molecular sieve in septum-capped bottles. Solvents used for column chromatography were dry, reagent grade. The column material was E. Merck silica gel 60, ASTM 30–70 mesh. The several types of reactions are illustrated with examples and all results are tabulated in Tables I–IV. Elemental analyses were obtained on a number of products, while some were characterized by parent peak mass spectrum. Analytical data are given in Table V. All compounds were characterized by ¹H NMR (Table IV). Ultraviolet spectra data for most of the compounds are also given in Table IV. A Varian XL-100 NMR spectrometer and a Beckman DK-2A spectrophotometer were used.

Reaction of 1c with tert-Butylamine. To a stirred solution of 532 mg (1.78 mmol) of 1c in 30 mL of CH₃CN was added 0.5 mL (~4.75 mmol) of tert-butylamine. The purple solution became pale yellow immediately. After 15 min the solvent was removed in a rotary evaporator, and the residue was washed well with water, dissolved in dry acetone, and dried over K_2CO_3 . The acetone solution was concentrated and placed on a silica gel column. Elution with petroleum ether (bp 30–60 °C) gave 156 mg (0.78 mmol, 44%) of phenoxathiin. Elution with ether gave 26 mg (0.118 mmol, 6%) of phenoxathiin 5-oxide, and elution with acetone gave 303 mg (0.81 mmol, 46%) of 2c (R = t-Bu), mp 203–204 °C (from aqueous methanol), infrared (Nujol) ClO_4^- band at 9.1–9.3 μ .

Reaction of 1d with Methylamine. Methylamine was bubbled into a solution of 601 mg (1.93 mmol) of 1d in 50 mL of CH₃CN causing very rapid disappearance of the purple color of the cation radical. The solution was worked up as above. Elution with benzene gave 275 mg (1.27 mmol, 66%) of thianthrene. Elution with ether gave 12 mg (0.05 mmol, 2.6%) of thianthrene 5-oxide, and elution with acetone gave a mixture of 2d (R = Me) and 4d. These were separated with ethanol, in which 4d is sparingly soluble, giving 43 mg (0.079 mmol, 8.2%) of 4d and 100 mg (0.289 mmol, 15%) of 2d, mp 120–122 °C (from CH₂Cl₂-ether).

Deprotonation of 2c. Formation of 5c ($\mathbf{R} = t$ -Bu). A mixture of

Compd	R	R ₁	Formula	C	H	N	S	Cl
2 c	t-Bu		C ₁₆ H ₁₈ NSClO ₅	51.7	4.88	3.77	8.63	9.54
			Found	51.4	4.72	4.02	9.20	9.87
2 d	${ m Me}$		$C_{13}H_{12}NS_2ClO_4$	45.2	3.49	4.05	18.5	10.3
			Found	44.8	3.49	4.06	18.8	10.6
2d	Et		$C_{14}H_{14}NS_2ClO_4$	46.7	3.92	3.89	17.8	9.8
			Found	46.6	4.22	4.03	17.9	10.6
2d	$\mathrm{C_6H_5CH_2}$		$C_{19}H_{16}NS_2ClO_4$	54.1	3.82	3.31	15.2	8.4
			Found	54.4	3.98	3.50	15.4	8.5
3c	t-Bu	Me	$C_{17}H_{20}NSClO_5$	52.9	5.22	3.63	8.31	9.2
			Found	52.8	5.38	3.50	8.25	
3c	Pr	Me	$C_{16}H_{18}NSCIO_5$	51.7	4.88	3.92	8.95	9.54
			Found	51.6	4.84			9.53
3c	C_6H_{11}	Me	$C_{19}H_{22}NSClO_5$	55.4	5.38	3.40	7.78	8.6
			Found	55.4	5.40	3.63	7.79	
3c	$C_6H_5CH_2$	$C_6H_5CH_2$	$C_{26}H_{22}NSClO_5$	62.9	4.47	2.82	6.46	7.13
			Found	63.6	4.41	3.11	6.27	7.73
3 d	\Pr	Me	$C_{16}H_{18}NS_2ClO_4$	49.6	4.67	3.61	16.5	9.13
			Found	49.9	4.74	3.46	16.6	
3 d	$C_{6}H_{11}$	Me	$C_{19}H_{22}NS_2ClO_4$	53.3	5.18	3.27	15.0	8.28
			Found	53.9	5.48	3.75	14.9	8.4
3 d	$C_6H_5CH_2$	Me	$C_{20}H_{18}NS_2ClO_4$	55.1	4.16	3.21	14.7	8.1
			Found	55.1	4.51	3.46	14.8	8.20
5c	C_6H_{11}		$C_{18}H_{19}NSO$	72.7	6.44	4.71	10.8	
			Found	72.5	6.49	4.89	10.7	

Table V. Analytical Results^{a,b}

^a Schwarzkopf Laboratories, Woodside, N.Y. ^b Most of the sulfilimines were characterized by mass matching of the parent peak. For 5c, R = t-Bu, 271.06 (calcd, 271.103); R = Pr, 257.075 (calcd, 257.085); $R = C_6H_5CH_2$, 305.078 (calcd, 305.087). For 5d, R = Me, 245.035 (calcd, 245.034); $R = C_6 H_{11}$, 313.096 (calcd, 313.096); $R = C_6 H_5 C H_2$, 321.066 (calcd, 321.065).

502 mg (1.35 mmol) of 2c ($\mathbf{R} = t$ -Bu) in 15 mL of ethanol and 2 mL of 20% NaOH was stirred for 2 h, and concentrated to give a white solid. This was filtered, washed with water, and dried to give 346 mg (1.28 mmol, 95%) of 5c (R = t-Bu), mp 74-75 °C (from aqueous ethanol)

Deprotonation of 2d. Formation of 5d (R = Me). After being stirred for 30 min a solution of 500 mg (1.45 mmol) of 2d (R = Me) in 50 mL of ethanol and 2 mL of NaOH was poured into 300 mL of water. Extraction with ether gave 335 mg (1.37 mmol, 95%) of **5d** (R = Me), mp 44-46 °C (from ether-petroleum ether).

Methylation of 5c. Formation of 6c ($\mathbf{R} = t$ -Bu). To a suspension of 346 mg of 5c (R = t-Bu) in 25 mL of dry ether was added 1 mL of CH_3I . The 5c dissolved immediately, and after stirring for 1 h the solution began depositing white crystals. Filtration after 2 h gave 443 mg (1.07 mmol, 84%) of 6c (R = t-Bu), mp 168–169 °C (from CHCl3-ether).

Conversion of 6c into 3c ($\mathbf{R} = t$ -Bu; $\mathbf{R}_1 = \mathbf{M}e$). Reaction with AgClO₄. To a stirred solution of 103 mg (0.25 mmol) of 6c (R = t-Bu) in 10 mL of acetone was added an excess of AgClO₄. After 15 min the precipitate of AgI was filtered through Celite filter aid. Concentration of the filtrate gave 77 mg (0.20 mmol, 80%) of 3c (R = t-Bu; R₁ = Me), mp 183-184 °C dec (from ethanol).

Reaction of 1c with N-Methylbenzylamine. Formation of 3c ($\mathbf{R} = \mathbf{Benzyl}; \mathbf{R}_1 = \mathbf{Me}$). To a stirred solution of 1.11 g (3.7 mmol) of 1c in 40 mL of CH₃CN was added 0.5 mL (\simeq 4.10 mmol) of Nmethylbenzylamine. Workup gave 516 mg (2.58 mmol, 70%) of phenoxathiin, 63 mg (0.29 mmol, 8%) of phenoxathiin 5-oxide, and 260 mg of 3c (R = benzyl; R_1 = Me), mp 173-174 °C dec (from acetoneether).

Reaction of 1d with 5d (R = Me). Formation of 4d. To a solution of 200 mg (0.816 mmol) of 5d (R = Me) in 5 mL of CH₃CN was added 258 mg (0.816 mmol) of 1d in small portions. The first few portions added disappeared very quickly (color), but the rate of disappearance slowed up and eventually stopped well before all of the 1d was added. After 1 h the unreacted 1d was destroyed by adding water, and the solution was worked up in the usual way, giving 145 mg (0.67 mmol, 82% based on 1d) of thianthrene, 58 mg (0.25 mmol, 31%) of thianthrene 5-oxide, 12 mg (0.022 mmol, 2.7%) of 4d, and 198 mg (0.57 mmol, 70%) of 2d. It is noticeable that the conversion of 1d into thianthrene and thianthrene 5-oxide totals 111%, indicating that some of the 5d was probably converted into one or both of these compounds. In separate reactions it was found that 2d (R = Pr) did not react with1d.

Registry No.-1c, 55975-63-8; 1d, 35787-71-4; 2c (R = Pr), 61558-38-1; **2c** (R = t-Bu), 61558-40-5; **2c** (R = C₆H₁₁), 61558-42-7; $2c (R = C_6H_5CH_2), 61558-44-9; 2d (R = Me), 61558-46-1; 2d (R = Et),$ 61558-48-3; **2d** (R = Pr), 61558-50-7; **2d** (R = C₆H₁₁), 61558-52-9; **2d** $(R = C_6H_5CH_2), 61558-54-1; 3c (R = Me; R_1 = Me), 61558-56-3; 3c$ $(R = R_1 = Pr \cdot i), 61558 \cdot 58 \cdot 5; 3c (R = Pr; R_1 = Me), 61558 \cdot 60 \cdot 9; 3c (R = Pr \cdot R_1 = Me), 61558 \cdot 60 \cdot 9; 3c (R = P$ $= C_6 H_{11}; R_1 = Me$, 61558-62-1; **3c** (R = PhCH₂; R₁Me), 61558-64-3; 3c (R = R₁ = CH₂Ph), 61558-68-7; 3c (R = t-Bu; R₁ = Me), 61558-66-5; **3d** (R = Rr; R₁ = Me), 61558-70-1; **3d** (R = C₆H₁₁; R₁ = Me), 61558-73-9; **3d** (R = PhCH₂; R₁ = Me), 61558-72-3; **5c** (R = Pr), 61558-73-4; **5c** (R = t-Bu), 61558-74-5; **5c** (R = C₆H₁₁), 61558-75-6; **5c** ($R = PhCH_2$), 61558-76-7; **5d** (R = Me), 61558-77-8; **5d** (R = Pr), 61558-78-9; **5d** (R = C₆H₁₁), 61558-79-0; **5d** (R = PhCH₂), 61558-80-3; **6c** (R = Pr), 61558-81-4; **6c** (R = t-Bu), 61558-82-5; **6c** (R = C₆H₁₁), 61558-83-6; **6c** (R = PhCH₂), 61558-84-7; **6d** (R = Me), 61558-85-8; **6d** (R = Pr), 61558-86-9; **6d** ($R = C_6H_{11}$), 61558-87-0; **6d** ($R = PhCH_2$), 61558-88-1.

References and Notes

- Part 37: B. K. Bandlish and H. J. Shine, *J. Org. Chem.*, **42**, 561 (1977).
 Supported by the National Science Foundation, Grant NSF MPS 75-02794, and The Robert A. Welch Foundation, Grant D-028.
- Postdoctoral Fellow.
- (4) Taken in part from the Ph.D. Dissertation of S. R. Mani, Texas Tech University, Aug 1976. (5) B. K. Bandlish, A. G. Padilla, and H. J. Shine. J. Org. Chem., 40, 2590
- (1975). K. Kim and H. J. Shine, *J. Org. Chem.*, **39**, 2537 (1974).
- (7) (a) Y. Murata and H. J. Shine, J. Org. Chem., 39, 2337 (1974).
 (7) (a) Y. Murata and H. J. Shine, J. Org. Chem., 34, 3368 (1969); (b) V. D. Parker and L. Eberson, J. Am. Chem. Soc., 92, 7488 (1970).
 (8) S. R. Mani and H. J. Shine, J. Org. Chem., 40, 2756 (1975).
 (9) J. J. Silber and H. J. Shine, J. Org. Chem., 36, 2923 (1971).